If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12x^2+36x-216=0
a = 12; b = 36; c = -216;
Δ = b2-4ac
Δ = 362-4·12·(-216)
Δ = 11664
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{11664}=108$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(36)-108}{2*12}=\frac{-144}{24} =-6 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(36)+108}{2*12}=\frac{72}{24} =3 $
| -2x-23=13x+23 | | 5x+49=12x-16 | | 78=(x-28) | | x=-25±√(25)^2-4(0.5)(-275)/2(-0.5) | | 45x=180;x=6 | | 7x-1+4x=98 | | 3x+11=-17 | | x=-25±√(25)^2-4(0.5)(-275) | | 14-9=7x+12 | | 14-9=7x12 | | 7=2(5-d)63 | | 7x^2+8x+12=0 | | 51=(x-1) | | 7,5x+40=8x | | 135=(x+15) | | 2x^2+5x+105=180 | | R^2+2r=-122 | | 18+7x-23-5x=27 | | x=9.6 | | 12x+2=44x+6 | | 6/3x+3/6x=28/9 | | Q+(3q-4)=6.75 | | 132=(3x+9) | | 42x^2+2x=8 | | 310(x+3x)=1950 | | 30x+1930x-31=49(40x+87) | | 100=(x+10) | | 2(2p-3p)-40=24 | | 17p+4=16-5p | | 8r+14=r-21 | | x^2-24x+360=260 | | -15+15d-7.5=7.5 |